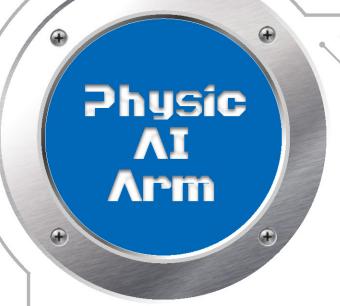


Physical Al Robot Training Equipment for Imitation Learning and Reinforcement Learning

Physic/I Arm

HANBACK ELECTRONICS CO.,LTD.

518 Yuseong-daero, Yuseong-Gu,
Daejeon 34202, South Korea
TEL. +82-42-610-1111, 1128 (Dir.)
E mail. support@hanback.co.kr


FAX. 042. 610. 1199

PhysicAI Arm

Software

Specifications

- Physical AI robot training equipment for imitation and reinforcement learning consisting of two 6-axis robot arms, intelligent robot controller, work cell base
- Enhance mobility and scalability by placing leader robot and follower robot on separate aluminum profile base
- GUI-based data view labeling replay are possible through monitor camera microphone included in leader robot
- Configure view calibration AR marker segmentation pose estimation pipeline through follower robot and two cameras in follower robot
- Establish strong grip against lighting layout change through camera-based vision grasping
- Support imitation learning and reinforcement on both leader and follower robot using intelligent robot controller integrated with ROS 2 open stack
- Provide model dataset toolchain integrated into PyTorch to easily reproduce and share real-world robotics Al
- Consistently manage teleoperation dataset standardization policy learning evaluation reproduction in a single framework
- Support training experiment based on safety training, synthetic data generation, domain randomization through two-way synchronized simulation with real equipment
- Synchronizedmultimodaldata, verification on digital twin, safelearning deployment on real equipment
- Generative Al integration is possible such as diffusion policy, VLM/VLA, prompt-based control
- Provide examples of block pick-and-place based on teleoperation data collection and Behavior Cloning
- Provide digital twin example based on NVIDIA Isaac Sim

Openbox with X-Server, Tint2, conky, Oh-My-Zsh, tmux

Al Service

PyTorch / TensorFlow Lite / ONNX
Runtime (Arm Computer Library)

Perception(YOLO), whisper.cpp, llama.cpp, Piper TTS

PyTorch / TensorFlow / ONNX Runtime (TensorRT)

Type B

DeepStream
Perception(PeopleNet/YOLO),

VLM Inference, Zero-Shot Detection

Grounding DINO (GDINO), Riva Speech Al Embedded (ASR/TTS)

Middleware and Simulation

ROS2 Humble

NVIDIA Isaac Sim with PhysicAl Arm model

Integrated Development Environment for PC

VSCode, Remote SSH

Real-time log/serial console, package management work-flow

Hardware

Specifications

Workcell Base

Size	1200 x 600 x 600 mm		
Leader	Zone	3060/3030 Aluminum Profile, 600 x 600 x 65 mm	
	Angle Architecture		3030 Aluminum Profile, 30 x 300 x 600 mm
Follower	Zone	3060/3030 Aluminum Profile, 600 x 600 x 65 mm	
Power	220V AC IN / +12V SMPS		

Intelligent Integrated Controller

Arm-Cortex V8 64-bit, 16 GB LPDDR5

Ampere GPU 1024 CUDA cores + 32 Tensor cores

ONNX/CUDA runtime and TensorRT

256 GB Storage

1000 BASE-T Ethernet, 2.4G/5GHz dual-band Wi-Fi, Bluetooth

Leader

Operating System

- 24 inch IPS Display

Servo Driver Board

6-Axis Robotics Arms

- Handler
- Serial Bus Servo Motor: 1x (7.4V) 1:345, 2x (7.4V) 1:191, 3x (7.4V) 1:147 and Encoder

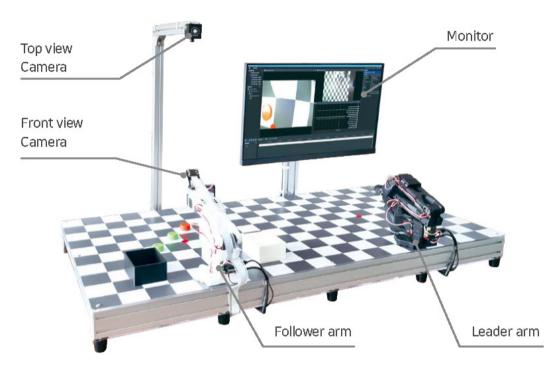
Follower

Camera 2ea

- for motion tracking : 130° 8MP
- for vision-based grasping: 130° 8MP

Servo Driver Board

6-Axis Robotics Arms


- Gripper
- Serial Bus Servo Motor: 6x (12V) 1:345 gear ratio motors for all joints and Encoder

HANBACK ELECTRONICS

Layout

Training Contents

- Physical AI & PhysicAl-Arm Pipeline Overview
- · ROS2 Basic & Interface Standardization
- Vision Pipeline I Camera Calibration
- · Data Collection Strategy & Quality Control
- · Behavior Cloning (BC) Baseline
- · Model Evaluation & Experiment Management
- · Diffusion Policy & Action Smoothing
- Vision Pipeline II Grasping Core
- Isaac Sim Integration & Digital Twin
- ROS2-based Deployment & Stabilization
- · Generative Al Integration

Componetns

PhysicAl Arm

AC Power Cable

Ethernet Cable

Object 12ea

2ea

Object Box 2ea

User Guide

^{*}The above information is subject to change or modification due to product upgrades or other reasons.